Remarks on mixed finite element methods for problems with rough coefficients
نویسندگان
چکیده
منابع مشابه
Remarks on Mixed Finite Element Methods for Problems with Rough Coefficients
This paper considers the finite element approximation of elliptic boundary value problems in divergence form with rough coefficients. The solution of such problems will, in general, be rough, and it is well known that the usual (Ritz or displacement) finite element method will be inaccurate in general. The purpose of the paper is to help clarify the issue of whether the use of mixed variational...
متن کاملA family of Multiscale Hybrid-Mixed finite element methods for the Darcy equation with rough coefficients
We aim at proposing novel stable finite element methods for the mixed Darcy equation with heterogeneous coefficients within a space splitting framework. We start from the primal hybrid formulation of the elliptic model for the pressure. Localization of this infinite-dimensional problem leads to element-level boundary value problems which embed multiscale and high-contrast features in a natural ...
متن کاملMixed Finite Element Methods for Elliptic Problems*
This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...
متن کاملAdaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...
متن کاملMixed Finite Element Methods for Problems with Robin Boundary Conditions
We derive new a-priori and a-posteriori error estimates for mixed nite element discretizations of second-order elliptic problems with general Robin boundary conditions, parameterized by a non-negative and piecewise constant function ε ≥ 0. The estimates are robust over several orders of magnitude of ε, ranging from pure Dirichlet conditions to pure Neumann conditions. A series of numerical expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1994
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1994-1203735-1